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Far from a shoreline, the spreading of a contaminant plume in a shallow-water flow 
can be predicted easily and accurately by a ray-tracing method. Unfortunately, the 
concentration predictions become singular at a beach, where the ray paths have a 
caustic. In this paper a uniform approximation is derived which remains valid at  a 
beach. It is shown how the singular ray solutions corresponding to rays incident to 
and transmitted from the beach can be combined to construct the uniform 
approximation. 

1. Introduction 
Ray methods are usually associated with the propagation of short waves in non- 

uniform media. The rays are the principal direction of information (or energy) 
propagation, and along these ray paths it is an elementary computational task to 
evaluate the phase of the waves. Also, the square of the wave amplitude varies 
inversely with the separation between rays. Cohen & Lewis (1967) pointed out that 
the essential ingredient is that the solution varies much more rapidly than the non- 
uniform medium, and they showed how ray methods could be used to solve diffusion 
equations. Instead of rapid phase oscillations there is rapid Gausian (exponential) 
decay, but otherwise the calculations proceed the same as for wave equations. 

Contaminant plumes in shallow-water flows are very long and narrow. A 
photograph to illustrate the narrowness of plumes is given by Fischer et al. (1979, 
figure 5.5). So, across the plume there is comparatively rapid decay of the 
contaminant concentration. The application of ray methods to shallow-water 
contaminant plumes has been investigated by Smith (1981) and by Kay (1987). The 
relationship between the ray, flow and flux directions is that the flux direction is 
midway between the ray and flow directions (see figure 1 of Smith 1981). 

At a beach the flux, flow and rays become parallel to the shoreline. Thus, the 
separation between adjacent ray paths tends to zero at  the beach (see figure 1) and 
the amplitude of the ray solution becomes erroneously singular. Smith (1983) has 
given a modified ray calculation which only gives the concentration at the shoreline. 
The purpose of the present paper is to derive a uniform approximation which is valid 
both far from and close to the shoreline. 

For wave problems there are well-established methods for the construction of non- 
singular solutions when the ray paths have caustics. A local analysis near the caustic 
can be used to derive an inner solution which can then be matched to an outer ray 
solution (Buchal & Keller 1960; Keller & Rubinow 1960). Alternatively, the inner 
solution can be stretched and twisted so that it remains accurate at  all distances from 
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FIQIJRE 1 .  A sketch of ray paths incident to and transmitted from a beach. 

the caustic (Ludwig 1966; Smith 1970). A convenient feature of the uniform solutions 
is that all the necessary information can be retrieved from the singular ray solutions 
for the two categories of rays approaching or leaving the caustic. 

For the diffusion problem of a contaminant plume adjacent to a uniformly sloping 
beach, Kay (1987) has derived a solution which can be interprcted as being the inner 
solution. Here it is shown how the uniform construction can be adapted to extend 
Kay's (1987) solution that it is accurate a t  all distances from thc shoreline. The 
prinicpal restriction is that near the shoreline the beach slope is neither zero nor 
infinite. As in the wave case, all the necessary information can be retrieved from the 
singular ray solutions for the two categories of rays approaching or leaving the 
beach. 

2. Ray solution 
For a shallow-water flow the (symmetric) horizontal diffusivity tensor ED scales as 

the product of the local water depth h and the local friction velocity u, (Elder 1959). 
The horizontal lengthscale L for changes in the flow or bed topography is typically 
very large relative to  a refernce depth H .  Similarly, a reference bulk velocity U is 
large relative to  a reference friction velocity U,. The smallness of the horizontal 
diffusivity tensor ED relative to Lu can be accounted for by our interpreting E as 
being a small parameter. 

The vertically integrated advection-diffusion equation takes the form 

f h u . V c - ~ V * ( h D * V c )  = 0, (2.la) 

with V . ( h u )  = 0. (2.lb) 

Here u is the horizontal current, V is the horizontal gradient opertor and c is the 
vertically averaged concentration. The f sign is a technical device which is used to 
ensure that the solution for the concentration has the correct asymmetry if the flow 
were to be reversed (Smith 1981). 

The ray solution takes the form 

c = edzexp(+_e-l@) (2.2) 

(Smith 1981, equation (2.2)). The rapid Gaussian (exponential) decay across the 
contaminant plume is accommodated via the explicit E - ~  factor in the exponential. 
So, although the concentration c varies rapidly, the amplitude factor z and the decay 
exponent @ are assumed to vary on the lengthscale L (except near the source). For 
wave problems the f sign would be replaced by i .  

If we substitute the ansatz (2.2) into the reversible advection-diffusion equation 
(2.la),  then we generate two classes of terms proportions1 to 

exp ( + ~ - l  q5), f exp ( f E-' @). (2.3) 
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Equating these classes of terms separately to zero, we have 

hu.V#-hV#.D.V$ = 2 V - ( h D * V z ) / z ,  (2.4a) 

hue V Z  - V. (zhD.V#) - hV# . D .  VZ = 0. (2.4b) 

Again, we remark that for wave problems the same splitting would be achieved by 
taking real and imaginary parts. 

Away from the source, the amplitude z and the decay exponent # are assumed to 
vary on the horizontal lengthscale L for changes in the flow. So, for small diffusion 
BD we can neglect the e2 term on the right-hand side of (2.4a).  The resulting first- 
order equation for # is 

In wave terminology, this would be called the dispersion relation. There are special 
directions (bi-characteristics or rays) 

u.V$-V#*D*V# = 0. (2.5) 

t = ( u - ~ D . V # ) / ~ U ~ ,  (2.6) 

along which the partial differential equation (2.5) becomes a first-order ordinary 
differential equation (Smith 1981, $ 4 ) .  Also, if J denotes the separation between 
adjacent rays, then the amplitude equation (2.4b) can be integrated: 

z2 h I u I  J = constant along rays (2.7) 

(Smith 1981, $ 5 ) .  Hence, as widely used in the context of water waves, ray tracing 
gives an easy computational procedure for calculating the concentration away from 
the beaches. (Section 6 details a simplified version of the ray calculations in which 
only the component of eD across the flow is retained.) 

Alas, at  a beach the water depth h, flow speed u and ray separation J all tend to 
zero. For turbulent flow along a smooth beach, with non-zero but finite slope, the 
respective rates of decay with off-shore distance y are y, yi and yi (see $6). The 
combined effect is to give the amplitude z a y-l singularity at  the beach. The source 
of this localized error in the ray solution is that there is rapid variation near the 
beach. 

3. Kay’s solution for a plume on a uniformly sloping beach 
For flow along a straight uniformly sloping beach, and with longitudinal (or skew) 

diffusion neglected, Kay (1987, equation (35)) derived an exact solution. A 
representation of Kay’s solution which highlights the different lengthscales involved 
is 

where 

c = B-tAexp(+e-la)K(e-Zp), 

Here A is an algebraic amplitude factor, which remains finite 
are similarity variables. The beach position corresponds to p = 0. The function K(6) 
satisfies the second-order ordinary differential equation 

( 3 . l a )  

(3 . lb )  

at the beach, and a, p 

$ ( ~ + K ) - ~ G K  = 0, (3.2a) 

with K(0)  = %. (3.2b) 
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The concentration remains finite at the beach (see figure 2), but away from the beach 
there is rapid dependence upon the similarity variable p. 

On a short enough lengthscale (of order e2L), any smooth beach with non-zero but 
finite slope looks straight and uniform. Also, except near the source, the disparity 
between (large) advection and (small) diffusion implies that longitudinal diffusion is 
negligible. So, for a general beach, Kay’s (1987) solution could be used as an inner 
solution as in the work of Keller and his collaborators (Buchal & Keller 1960; Keller 
& Rubinow 1960). Instead, we shall use Kay’s (1987) solution as the basic building- 
block for a uniformly valid solution. 

It is possible to envisage beach geometries which have zero or infinite beach slopes 
a t  the shoreline, or singularities away from the beach. For such geometries Kay’s 
solution would not be the appropriate inner solution. However, if there were an inner 
solution of separation-of-variables types, then it would be possible to adapt the 
subsequent analysis to accommodate the different class of beach geometries. 

4. Uniform solutions 
Conveniently, the structure ((3.1 a), ( 3 . 2 ~ ) )  of Kay’s solution conforms precisely to  

the requirements (( 1.2.1), (1.2.2)) needed for Smith’s (1970) method for constructing 
uniform asymptotic solutions. With f replacing i, the counterpart to equation 
(1.2.3) of Smith (1970) is the representation 

( 4 . 1 ~ )  

with (4.lb) 
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Here the unknown amplitudes A ,  B and unknown variables u, p are assumed to vary 
on the horizontal lengthscale L. By construction, the ansatz (4.1 a, b) inherits from 
Kay's (1987) solution the regularity property at  the shoreline. 

If we substitute the ansatz (4.la, b )  into the reversible advection-diffusion 
equation (Zla) ,  then we generate 4 classes of terms: 

Proceeding as in Smith (1970), we argue that to preserve the asymmetry for reversed 
flow, and because of the different rapid variations of K and of @%Id[, all four 
categories of terms must separately be zero : 

1 
1 

1 
0 = hA u.Vu-Wu.D.Va--Vp.D.Vp 

4P 

+$hB[u- V p  - 2Vg- D -  V p ]  - s2V. (hDVA), ( 4 . 3 ~ )  

[ 

[ 
1 

0 = hB u.Vu-Vu.D.Vu--Vp.D.Vp 
4P 

hA 

PT 
+ 7 [U * V p  - 2Vu * D * Vp]  -E'V - (hD - V B ) ,  (4.3b) 

0 = hu.VA- V .  (AhD. V a )  - hVa* D.VA 

- $V * (piBhD - V p )  - @hVp * D * V B ,  ( 4 . 3 ~ )  

0 = hu. V B  - V . (BhD . V V )  - hVg. D . V B  

It deserves emphasis that these equations ( 4 . 3 4  for the four unknowns A ,  B, p,  u 
are exact. No use has yet been made of the smallness of the diffusion ED relative to 
longitudinal advection. 

Away from the source A,  B, p u are assumed to vary on the horizontal lengthscale 
L for changes in the flow, and not the shorter lengthscales associated with the weak 
diffusion ED. So, for small E we infer that 

A - A(') + E ~ A ' ~ '  + . . . 
p - r + E 2 r ( l )  + . , . , 

B - B(O) + e2B(l) + . . . , 
CT - s + s2s(') + . . . , 

(4.4a, b)  

(4.4c, d )  

where A's), B(j), d), su) are all independent of e. The leading-order equations are 

( 4 . 5 ~ )  
1 

4r 
0 = u-Vs-Vs.D-Vs--Vr.D-Vr, 

0 = u.Vr-2Vs-D-Vr, (4.5b) 

-$V - (r;B(O)hD - V r )  -$-ihVr- D - VB(O), 

0 = hu*VA(O) - V . (A'o'hD*Vs) - hVs. D .  VA'O) 

( 4 . 5 ~ )  

0 = hu - VB'O) - V - (B'O'hD V S )  - ~ V S  * D VB'O) 

- V-r? D -Vr)  -:Vr - D - VA'O). (4.5d) 
r2 
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If E is a genuine measure of the narrowness of the contaminant plume, then for the 
one-term truncation to be accurate it suffices that be small. Far downstream the 
plume does eventually become wide. The growing width corresponds to  the variables 
r ,  s both decreasing. In  particular, where both r decreases to order E and s decreases 
to order e2, there is no longer the required rapid variation and the representation 
( 4 . 1 ~ )  ceases to be appropriate. 

5. Relation to ray methods 
Away from the shoreline, where p = 0, we can use the large-6 asymptotes 

to convert the uniform representation (4.lu, b )  into a ray approximation 

with 
r 

(&la ,  b)  

( 5 . 2 ~ )  

(5.2b, c) 

(5 .2d ,  e )  
r 

We can associate #', zi with rays going from the source prior to reaching the shoreline, 
and @, st with the transmitted rays returning from the shoreline (see figure 1). As we 
might expect, the ray combinations (5.2 b-e) satisfy the ray equations 

u.V#-V@.D.vq$'  = 0, (5 .3a)  
(5.3b) 

with equivalent equations for qS, 2. 
I n  practice it is easier to compute the ray solutions than the uniform solutions (see 

96). So, we invert the relationships (5.2b-e) and we use the singular ray solutions to 
construct the uniform solution : 

hu. VZ' - V * (hDz'V#) - hV# . D-VZ' = 0, 

(5.4u, b)  

At the shoreline the matching of $ and z between the two branches ensures that r = 
0. Thus, although the ray amplitudes zi,zt are singular a t  the shoreline, the 
amplitudes A''), B(') for the uniform solution are non-singular. 

6. Ray tracing in flow-following coordinates 
If we retain only tranverse diffusion (i.e. we neglect longitudinal and skew 

compents of the horizontal diffusion tensor D ) ,  then the ray calculations can be 
performed particularly neatly in a generalized coordinate system x, y aligned along 
and across the flow (Smith 1983). We use the notation m1,m2 to denote the metric 
coefficients in the relationship 

(6.1) ds2 = mt dx2 + mi dy2 
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FIGURE 3. Sketch of the along- and across-flow coordinate system. 

between thc distance increment ds and the coordinate increments dx, dy (see figure 
3 ) .  Thus, the eikonal equation (2 .5)  for the decay exponent # becomes 

a, # -F(ay = 0, ( 6 . 2 ~ )  

with (6.2 b )  

For turbulent flow along a smooth beach the diffusivity/velocity (and metric 
coefficient) ratio F is proportional to the local water depth. The value of this ratio a t  
the discharge position xo, yo is denoted Fa. 

The bi-characteristic or ray direction is along the vector 

(ml ,  m 2 ( g ) 8 )  with 6 = -2(FF0)ga,#. (6 .3a,  b )  

We make a change of variables from (2, y)  to (X,p) where p is the initial value of S 
and X is the increment of x along an individual ray as it goes outwards from the 
discharge position xo, yo. Thus, differentiation along a ray is defined 

F t  
a, = a,+(E) sa,. 

Along rays the equations for y, S and # take the neat forms 

(6.5a-c) 

The initial conditions a t  the discharge site are 

y = y o ,  6 = p ,  $ = O  a t  X = O ,  (6.6a-c) 

where the parameter p is used to label the individual rays. For later use we note that 
the separation J = a, y between adjacent rays satisfies the equation 

a,(J) = a, a, y = a, a, y = (a, xa, + a, yay) a, y = Jay((;)). (6.7) 
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To extend rays 6', q5' incident to  the shoreline caustic y = 0, into rays 8, # 
transmitted from the shoreline, it suffices that the orientation parameter 6 is reversed 
and the decay exponent # is continuous : 

at = -8, # = q9 a t  the shoreline y = 0. (6.8a, b )  

For the special case in which the diffusivity/velocity (and metric coefficient) ratio F 
is independent of the longshore coordinate x, i t  is elementary to solve equations (6.5) 
and (6.6): 

Ji = X ( q ) .  F i  

(6.9a-c) 

(6 .9d)  

So, near the shoreline y = 0, J' tends to zero a t  the rate yi. Beyond the caustic the 
extended solution (for p negative) is 

(6.10a, b )  

(6.10c, d )  

If we eliminate the ray parameter p in favour of the off-shore coordinate y, then the 
solutions for the decay exponents are 

If we retain only the cross-flow component D,, of the diffusivity tensor D ,  then the 
equation (2.4b) for the amplitude factor z becomes 

In terms of the X, F ,  6 notation this equation can be re-written 

(6.12) 

(6.13) 

Mass conservation (2.1 b )  and the equation (6.7) for the ray separation J enable us to 
replace the y-derivative by X-derivatives : 

1 
2J 

CIx(hm2u)+-i3, J = 0. (6.14) 
1 1 
z 2hm, u 
-axz+- 

Integration with respect to  X yields the result 

constant 
47t 

z2 hm, UJ = along rays. (6.15) 

For the rays going outwards from the discharge, we can relate the ray constant to 
the value of the discharge rate Q and the flow properties a t  the discharge 

evaluated at xo, yo. . Q2mz 
hD22 "1 

constant' = ~ (6.16) 
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Conveniently, the p-labelling of the rays ensures that the constant is the same for all 
rays. Beyond the shoreline caustic the sign of J reverses, so the ray constant also 
needs to be reversed 

constantt = -~ '"' evaluated a t  x ~ , ~ , .  
hD22 m1 

(6.17) 

For the special case in which F is independent of x, the solutions (6.9d) and (6.10d) 
for the ray separations S, S imply that 

(6.18) 

Near the shoreline F ,  h and u tend to zero at the rates y, y and yi. Thus, the ray 
amplitudes become singular a t  the rate y-l. It is the purpose of the earlier sections 
of this paper to  resolve the local failure of the ray method. 

7. Illustrative example 
To allow a direct comparison with Kay's (1987) exact solution we consider x- 

independent flow along a straight coastline with longitudinal (or skew) diffusion 
r-eglected. For turbulent flow over a smooth bed, the y-dependence of the depth 
topography, flow velocity and traverse diffusivity are related : 

h = H f ( y ) ,  u = U$, ED,, = O f : .  ( 7.1 a+) 

Here H ,  U and D are the values of the water depth, longshore velocity and transverse 
diffusivity a t  some convenient reference position (which might be the discharge 
distance y = yo). The non-dimensional function f(y) gives the shape of the depth 
profile outwards from the shoreline y = 0. Kay (1987, equation (25) )  considers the 
special case f = y. 

The validity of the ray solution (2 .2)  or the uniform solution (4 . la ,  b )  depends upon 
a disparity of scales, as formalized by the parameter B. If L is the off-shore lengthscale 
of the depth profiles, then the smallnes of the diffusion relative to the advection can 
be characterized : 

D 
UL 

€ = - .  

If the coordinates x, y are scaled relative to the intrinsic lengthscale L,  then the 
metric coefficients m,, m, in the two directions have the values 

m, = L ,  m , = L .  (7.3) 

For the ray solution detailed in the previous section the diffusivity/velocity (and 
metric coefficient) ratio F is given by 

F = f ( Y ) .  (7.4) 

The solutions (6.11a, b )  for the decay exponents are 
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y = o  y = l  y = 2  
I 

FIGURE 4. Three depth profiles for which the concentration cwntours arc given in figures 5 ( n .  6 ) .  

wherc X is the increment of x downstream of the dischargc position xo. For a volume 
dischargc ratc Q thc solutions (6.18) for the amplitude factors are 

This ray solution has singularities as y;l or y-l if either the discharge site yo or 
observation position y is close to the shoreline. 

Thc uniform solution (4.la, b )  is designed to resolve the spurious shoreline 
singularities. The ray combinations ( 5 . 4 ~ 4 )  yield the canonical variables and 
amplitudes 

Although the ray amplitude (6.6) was singular a t  the shoreline, the amplitude A(') 
remains finite. The absence of the B(O) term means that at leading order in E ,  the 
uniform solution 

c = ,-%A@' exp (E-l  s)K(c- 'r)  

only differs from Kay's (1987, equation (35)) exact solution in the specification of the 
canonical variables r , s .  (At this stage there is no need for the technical device of 
the sign.) 

(7.8) 

Figure 4 shows thc three depth profiles a = 0, 0.1, -0.1 in the family 

with $(y) = (1  -y) exp (-&). (7.9a, b )  Y 
[I + 4 ( Y ) I 2 '  

f ( Y ;  a )  = 

Kay's (1987) exact solution concerns the case a = 0, when the beach has a uniform 
slope. The formulae (7.7a-c) yield the expressions 

(7.10a) 
1 
X 

s = --{y[l +aY(y)]2+yo[l +aY(y,)]2), 

r = 4 3 [ 1  YY +aY(y)]'[l +crY(y0)l2, (7.10b) 
X 
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FIQURE 5. (a) Comparison between the concentration contours ~ when the beach has uniform 
slope, and the contours ----- when there is slightly reduced depth shoreward of the discharge. ( b )  
Comparison between the concentration contours ~ when the beach has uniform slope, and the 
contours . . . . . when there is slightly increased depth shoreward of the discharge. 

with 
1 

Y(y) = Y r W d Y  2yp 0 Yt = exp (-&). (7.10d) 

For more complicated depth profiles the integrals (7.7a-c) would need to be 
evaluated numerically. 

Figure 5 ( a )  compares Kay's (1987) exact solution for a = 0,' with the uniform 
asymptotic approximation for a = 0.1 when the discharge has strength 

HUL H V L 2  &=- =- 
E D '  

(7.11) 

and is situated at  the reference distance yo = 1 from the shoreline. At this location 
the initial depth, velocity and diffusivity is the same for all values of a. Figure 5 ( b )  
gives the corresponding comparison between the cases a = 0, a = -0.1. As the 
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0.8 1 a = 0.1 

0 0.2 0.4 0.6 0.8 1 .O 
Along shore xD/CJL' 

FIGUSE 6. Shoreline concentrations for the three depth profiles shown in figure 4. 

plumes widen and experience differences in depths, velocities and diffusivities, the 
solutions for the different topographies begin to separate. Shallower water is 
associated with slower mixing and higher concentrations. So, in figure 5 (a)  the higher 
(and later) shoreline concentrations occur for the shallower beach a = 0.1. Similarly, 
in figure 5 ( b )  i t  is the uniform beach a = 0 that  is associated with the higher (and 
later) shoreline concentrations. Figure 6 shows the shoreline concentrations for the 
three values of a. The differences in shoreline concentration contours are much more 
marked than are the differences in depth profiles. 

I n  practice the reference value D of the transverse diffusivity scales as 

D x 0.2HU,, (7.12) 

where H i s  the depth and U ,  is the friction velocity a t  the reference position (Fischer 
et aE. 1979, equation (5.4)). Thus, using (7.2) we can estimate the small parameter E 

Ex 0.2 (2); - -. (7.13) 

So, if we estimate the velocity ratio U,/U as being about 0.1, and the beach slope 
HIL as being about 0.1, then we arrive at the estimate 

E x 0.002. (7.14) 

We recall that the asymptotic expansions (4.4~4) proceed in powers of s2, so the 
approximate formula (7.8) will be extremely accurate. 

8. Summary 
The ray approximation corresponds to  regarding any contaminant plume in a 

shallow-water flow as being a distortion of the Gaussian plume in a straight constant 
depth and velocity flow. Provided that the plume is long and narrow, i t  is an easy 
computational task to  evaluate the necessary distortions (see Q 6). Unfortunately, 
there are spurious singularities a t  a beach where the depth and velocity tend to zero. 
The new non-singular beach solution is instead a distortion of Kay's (1987) exact 
solution for a discharge in the idealized case of flow along a straight uniformly- 
sloping beach. 

For the same contaminant plume the two alternative distortions are necessarily 
related (see equations ( 5 . 4 ~ 4 ) ) .  Conveniently, the ray information can be used to 
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construct the dependent variables r ,  8 and amplitudes A(o) ,  B(O) in the non-singular 
beach solution. For simple beach geometries the singular ray solutions, and hence the 
non-singular beach solution can be obtained analytically. 

I wish to thank Dr David Keiller of Binnie and Partners for his interest in ray 
methods for pollution problems. This work was funded by the Royal Society. 
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